| 1. | Finitely presented dimensions of commutative gr - coherent rings 有限表现维数 |
| 2. | Graded dimension of f . g . graded torsionlees modules over gr - - coherent rings 分次半自反模的分次维数 |
| 3. | Fp - selfinjective dimension over coherent rings 内射维数 |
| 4. | Graded module on gr - coherent rings 凝聚环上的分次模 |
| 5. | Moreover , it was proved that if r is an n - coherent ring , then the direct product of n - flat r - modules is n - flat r - module 对偶为; :一凝聚环,证明了对于。一凝聚环, 。一平坦模的直积为n一平坦模 |
| 6. | In the second part of this paper , using of linear compact and injective cogenerator so on , we discuss the relations between morita duality and weak morita duality . in [ 16 ] , n - absolutely pure modules , n - flat modules and n - coherent rings are defined 在文献[ 16 ]中,作者定义了n -绝对纯模和n -平坦模,并在此意义下将凝聚环推广硕士学位论文:弱内射模与弱morit 。 |
| 7. | In chapter 3 , we discuss n - flat modules and n - fp - injective modules , we define n - flat dimension and n - fp - injective dimension , we consider n - flat modules and n - fp - injective modules in commutative n - coherent rings , their properties are similar to flat and injectivc modules in commutative coherent rings 在第三章中,我们主要讨论了n -平坦模和n - fp内射模,定义了n -平坦维数和n - fp内射维数,并考虑了交换n -凝聚环中的n -平坦模和n - fp内射模。他们有类似于交换凝聚环中的平坦模和内射模的性质。 |